05-04 Buoyancy Lab

Objective

• Explore the apparent weight of an object when it is submerged.

Materials

- 4 Large washers
- Paperclip
- Force Sensor
- Beaker (or cup) of water
- Caliper
- Known mass (to calibrate the force sensor)

Procedure

- 1. Calibrate the force sensor.
- Hang the 4 washers from the force sensor using a bent paperclip. Measure the weight of the washers.
 *W*_{air} = ______ N
- 3. Carefully submerge the washers in water without touching the sides or bottom. What does the force sensor read now? *W*_{submerged} = _____ N
- Since this weight is less, the water must be pushing the washers up. What is the difference in weights (this is called **buoyant force**)? *B* = ______ N
- 5. Find the volume of the washers.
 - a. Outer diameter, d_{out} = _____ cm; r_{out} = _____ cm
 - b. Inner diameter, d_{in} = _____ cm; r_{in} = _____ cm
 - c. Height of stack of washers, $h = _$ cm d. $V = \pi h (r_{out}^2 - r_{in}^2), V = _$ cm³
- 6. When the washers were put in the water, how much water was displaced? _____ cm³
- 7. Using density, find the mass of water of the same volume ($\rho_{water} = 1 \text{ g/cm}^3$). $m_{water} = _____ \text{g}$
- 8. Find the weight of that much water. *W* = _____ N
- 9. Compare steps 4 and 8 and find the percent difference. $\% diff = \frac{|value1-value2|}{(\frac{value1+value2}{2})} \times 100\%$
- 10. Talk to neighboring groups and make a conclusion about the buoyant force and the weight of water displaced.

Dry the washers before putting them away.